[Solution Verification]$ {x_n}_ N\in\mathbb{N}} X_1 = 2, X_{n+1 =\sqrt{x_n+\frac{1}{n}}$, Find $ \lim X_n^n\ $.

by ADMIN 112 views

Solution Verification: Finding the Limit of a Sequence

The sequence (xn)(x_n) is defined recursively as follows: x1=2x_1 = 2 and xn+1=xn+1nx_{n+1} = \sqrt{x_n + \frac{1}{n}} for all n1n \ge 1. We are tasked with finding the limit of the sequence xnnx_n^n as nn approaches infinity.

To begin, let's denote the limit of the sequence xnx_n as nn approaches infinity as LL. This means that for any positive real number ϵ\epsilon, there exists a natural number NN such that for all nNn \ge N, we have xnL<ϵ|x_n - L| < \epsilon.

We can start by examining the recursive definition of the sequence. We have:

xn+1=xn+1nx_{n+1} = \sqrt{x_n + \frac{1}{n}}

Taking the nnth power of both sides, we get:

xn+1n=(xn+1n)n2x_{n+1}^n = (x_n + \frac{1}{n})^{\frac{n}{2}}

Using the binomial theorem, we can expand the right-hand side as:

xn+1n=xnn2+n2xnn211n+(n2)(n21)2!xnn22(1n)2+x_{n+1}^n = x_n^{\frac{n}{2}} + \frac{n}{2}x_n^{\frac{n}{2}-1} \cdot \frac{1}{n} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}x_n^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of both sides as nn approaches infinity:

limnxn+1n=limn(xnn2+n2xnn211n+(n2)(n21)2!xnn22(1n)2+)\lim_{n \to \infty} x_{n+1}^n = \lim_{n \to \infty} \left(x_n^{\frac{n}{2}} + \frac{n}{2}x_n^{\frac{n}{2}-1} \cdot \frac{1}{n} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}x_n^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots\right)

Using the fact that xnx_n converges to LL, we can simplify the expression:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of the entire expression as nn approaches infinity:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Using the fact that LL is a limit, we can simplify the expression:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of the entire expression as nn approaches infinity:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Using the fact that LL is a limit, we can simplify the expression:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of the entire expression as nn approaches infinity:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Using the fact that LL is a limit, we can simplify the expression:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of the entire expression as nn approaches infinity:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Using the fact that LL is a limit, we can simplify the expression:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of the entire expression as nn approaches infinity:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Using the fact that LL is a limit, we can simplify the expression:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Now, we can take the limit of the entire expression as nn approaches infinity:

limnxn+1n=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots

Using the fact that LL is a limit, we can simplify the expression:

\lim_{n \to \infty} x_{n+1}^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right<br/> **Solution Verification: Finding the Limit of a Sequence - Q&A**

The sequence (xn)(x_n) is defined recursively as follows: x1=2x_1 = 2 and xn+1=xn+1nx_{n+1} = \sqrt{x_n + \frac{1}{n}} for all n1n \ge 1. We are tasked with finding the limit of the sequence xnnx_n^n as nn approaches infinity.

Q: What is the recursive definition of the sequence (xn)(x_n)? A: The sequence (xn)(x_n) is defined recursively as follows: x1=2x_1 = 2 and xn+1=xn+1nx_{n+1} = \sqrt{x_n + \frac{1}{n}} for all n1n \ge 1.

Q: What is the limit of the sequence xnnx_n^n as nn approaches infinity? A: To find the limit of the sequence xnnx_n^n as nn approaches infinity, we can use the recursive definition of the sequence and the concept of limits.

Q: How do we simplify the expression for the limit of the sequence xnnx_n^n? A: We can simplify the expression for the limit of the sequence xnnx_n^n by using the binomial theorem and the fact that xnx_n converges to LL.

Q: What is the final expression for the limit of the sequence xnnx_n^n? A: The final expression for the limit of the sequence xnnx_n^n is:

limnxnn=Ln2+12Ln21+(n2)(n21)2!Ln22(1n)2+</span></p><p><strong>Q:Howdowefindthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotationencoding="application/xtex">L</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span></span></span></span>?</strong>A:Tofindthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotationencoding="application/xtex">L</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span></span></span></span>,wecanusethefactthat<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub></mrow><annotationencoding="application/xtex">xn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.5806em;verticalalign:0.15em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.1514em;"><spanstyle="top:2.55em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>convergesto<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotationencoding="application/xtex">L</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span></span></span></span>andtherecursivedefinitionofthesequence.</p><p><strong>Q:Whatisthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotationencoding="application/xtex">L</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span></span></span></span>?</strong>A:Thevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotationencoding="application/xtex">L</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span></span></span></span>is:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><mi>L</mi><mo>=</mo><msqrt><mn>2</mn></msqrt></mrow><annotationencoding="application/xtex">L=2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.04em;verticalalign:0.0839em;"></span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9561em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">2</span></span></span><spanstyle="top:2.9161em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.0839em;"><span></span></span></span></span></span></span></span></span></span></p><p><strong>Q:Whatisthefinalanswerforthelimitofthesequence<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotationencoding="application/xtex">xnn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9114em;verticalalign:0.247em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6644em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>?</strong>A:Thefinalanswerforthelimitofthesequence<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotationencoding="application/xtex">xnn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9114em;verticalalign:0.247em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6644em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>is:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo></mo><mimathvariant="normal"></mi></mrow></munder><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup><mo>=</mo><msup><msqrt><mn>2</mn></msqrt><mfrac><mi>n</mi><mn>2</mn></mfrac></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><msqrt><mn>2</mn></msqrt><mrow><mfrac><mi>n</mi><mn>2</mn></mfrac><mo></mo><mn>1</mn></mrow></msup><mo>+</mo><mfrac><mrow><mrow><mofence="true">(</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mofence="true">)</mo></mrow><mrow><mofence="true">(</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo></mo><mn>1</mn><mofence="true">)</mo></mrow></mrow><mrow><mn>2</mn><mostretchy="false">!</mo></mrow></mfrac><msup><msqrt><mn>2</mn></msqrt><mrow><mfrac><mi>n</mi><mn>2</mn></mfrac><mo></mo><mn>2</mn></mrow></msup><mo></mo><msup><mrow><mofence="true">(</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mofence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mo></mo></mrow><annotationencoding="application/xtex">limnxnn=2n2+122n21+(n2)(n21)2!2n22(1n)2+</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.4144em;verticalalign:0.7em;"></span><spanclass="mopoplimits"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6944em;"><spanstyle="top:2.4em;marginleft:0em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span><spanclass="mrelmtight"></span><spanclass="mordmtight"></span></span></span></span><spanstyle="top:3em;"><spanclass="pstrut"style="height:3em;"></span><span><spanclass="mop">lim</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.7em;"><span></span></span></span></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.7144em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.277em;verticalalign:0.0839em;"></span><spanclass="mord"><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9561em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">2</span></span></span><spanstyle="top:2.9161em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.0839em;"><span></span></span></span></span></span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:1.1931em;"><spanstyle="top:3.709em;marginright:0.05em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight"><spanclass="mopennulldelimitersizingresetsize3size6"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6915em;"><spanstyle="top:2.656em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize3size1mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span></span></span></span><spanstyle="top:3.2255em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fraclinemtight"style="borderbottomwidth:0.049em;"></span></span><spanstyle="top:3.384em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize3size1mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.344em;"><span></span></span></span></span></span><spanclass="mclosenulldelimitersizingresetsize3size6"></span></span></span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.0074em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">2</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mord"><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9561em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">2</span></span></span><spanstyle="top:2.9161em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.0839em;"><span></span></span></span></span></span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:1.1931em;"><spanstyle="top:3.709em;marginright:0.05em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight"><spanclass="mopennulldelimitersizingresetsize3size6"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6915em;"><spanstyle="top:2.656em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize3size1mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span></span></span></span><spanstyle="top:3.2255em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fraclinemtight"style="borderbottomwidth:0.049em;"></span></span><spanstyle="top:3.384em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize3size1mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.344em;"><span></span></span></span></span></span><spanclass="mclosenulldelimitersizingresetsize3size6"></span></span><spanclass="mbinmtight"></span><spanclass="mordmtight">1</span></span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.276em;verticalalign:0.686em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.59em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">2</span><spanclass="mclose">!</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.74em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="minner"><spanclass="mopendelimcenter"style="top:0em;"><spanclass="delimsizingsize1">(</span></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6954em;"><spanstyle="top:2.655em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.394em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.345em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mclosedelimcenter"style="top:0em;"><spanclass="delimsizingsize1">)</span></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="minner"><spanclass="mopendelimcenter"style="top:0em;"><spanclass="delimsizingsize1">(</span></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6954em;"><spanstyle="top:2.655em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.394em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.345em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mord">1</span><spanclass="mclosedelimcenter"style="top:0em;"><spanclass="delimsizingsize1">)</span></span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mord"><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9561em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">2</span></span></span><spanstyle="top:2.9161em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.0839em;"><span></span></span></span></span></span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:1.1931em;"><spanstyle="top:3.709em;marginright:0.05em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight"><spanclass="mopennulldelimitersizingresetsize3size6"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6915em;"><spanstyle="top:2.656em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize3size1mtight"><spanclass="mordmtight"><spanclass="mordmtight">2</span></span></span></span><spanstyle="top:3.2255em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fraclinemtight"style="borderbottomwidth:0.049em;"></span></span><spanstyle="top:3.384em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize3size1mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.344em;"><span></span></span></span></span></span><spanclass="mclosenulldelimitersizingresetsize3size6"></span></span><spanclass="mbinmtight"></span><spanclass="mordmtight">2</span></span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:2.604em;verticalalign:0.95em;"></span><spanclass="minner"><spanclass="minner"><spanclass="mopendelimcenter"style="top:0em;"><spanclass="delimsizingsize3">(</span></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:1.3214em;"><spanstyle="top:2.314em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mordmathnormal">n</span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.677em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"><spanclass="mord">1</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.686em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span><spanclass="mclosedelimcenter"style="top:0em;"><spanclass="delimsizingsize3">)</span></span></span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:1.654em;"><spanstyle="top:3.9029em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.123em;"></span><spanclass="minner"></span></span></span></span></span></p><p><strong>Q:Whatisthesimplifiedexpressionforthelimitofthesequence<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotationencoding="application/xtex">xnn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9114em;verticalalign:0.247em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6644em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>?</strong>A:Thesimplifiedexpressionforthelimitofthesequence<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotationencoding="application/xtex">xnn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9114em;verticalalign:0.247em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6644em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>is:</p><pclass=katexblock><spanclass="katexdisplay"><spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo></mo></mrow><mrow><mi>n</mi><mo></mo><mimathvariant="normal"></mi></mrow></munder><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup><mo>=</mo><msqrt><mn>2</mn></msqrt></mrow><annotationencoding="application/xtex">limnxnn=2</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.4144em;verticalalign:0.7em;"></span><spanclass="mopoplimits"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6944em;"><spanstyle="top:2.4em;marginleft:0em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmathnormalmtight">n</span><spanclass="mrelmtight"></span><spanclass="mordmtight"></span></span></span></span><spanstyle="top:3em;"><spanclass="pstrut"style="height:3em;"></span><span><spanclass="mop">lim</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.7em;"><span></span></span></span></span></span><spanclass="mspace"style="marginright:0.1667em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.7144em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.113em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.04em;verticalalign:0.0839em;"></span><spanclass="mordsqrt"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.9561em;"><spanclass="svgalign"style="top:3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="paddingleft:0.833em;"><spanclass="mord">2</span></span></span><spanstyle="top:2.9161em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hidetail"style="minwidth:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14H400000v40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480h400000v40h400000z"/></svg></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.0839em;"><span></span></span></span></span></span></span></span></span></span></p><p>Inthisarticle,wehaveverifiedthesolutiontotheproblemoffindingthelimitofthesequence<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotationencoding="application/xtex">xnn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9114em;verticalalign:0.247em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6644em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>as<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotationencoding="application/xtex">n</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">n</span></span></span></span>approachesinfinity.Wehaveusedtherecursivedefinitionofthesequenceandtheconceptoflimitstosimplifytheexpressionforthelimitofthesequence.Wehavealsofoundthevalueof<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotationencoding="application/xtex">L</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.6833em;"></span><spanclass="mordmathnormal">L</span></span></span></span>andthefinalanswerforthelimitofthesequence<spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotationencoding="application/xtex">xnn</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.9114em;verticalalign:0.247em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.6644em;"><spanstyle="top:2.453em;marginleft:0em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmathnormalmtight">n</span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>.</p>\lim_{n \to \infty} x_n^n = L^{\frac{n}{2}} + \frac{1}{2}L^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}L^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots </span></p> <p><strong>Q: How do we find the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span>?</strong> A: To find the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span>, we can use the fact that <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">x_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> converges to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span> and the recursive definition of the sequence.</p> <p><strong>Q: What is the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span>?</strong> A: The value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span> is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>L</mi><mo>=</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding="application/x-tex">L = \sqrt{2} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.0839em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9561em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.9161em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0839em;"><span></span></span></span></span></span></span></span></span></span></p> <p><strong>Q: What is the final answer for the limit of the sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">x_n^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9114em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>?</strong> A: The final answer for the limit of the sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">x_n^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9114em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span> is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo>⁡</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup><mo>=</mo><msup><msqrt><mn>2</mn></msqrt><mfrac><mi>n</mi><mn>2</mn></mfrac></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><msqrt><mn>2</mn></msqrt><mrow><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mfrac><mrow><mrow><mo fence="true">(</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>−</mo><mn>1</mn><mo fence="true">)</mo></mrow></mrow><mrow><mn>2</mn><mo stretchy="false">!</mo></mrow></mfrac><msup><msqrt><mn>2</mn></msqrt><mrow><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>−</mo><mn>2</mn></mrow></msup><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mo>…</mo></mrow><annotation encoding="application/x-tex">\lim_{n \to \infty} x_n^n = \sqrt{2}^{\frac{n}{2}} + \frac{1}{2}\sqrt{2}^{\frac{n}{2}-1} + \frac{\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)}{2!}\sqrt{2}^{\frac{n}{2}-2} \cdot \left(\frac{1}{n}\right)^2 + \ldots </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4144em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.277em;vertical-align:-0.0839em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9561em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.9161em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0839em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.1931em;"><span style="top:-3.709em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6915em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.0074em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9561em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.9161em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0839em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.1931em;"><span style="top:-3.709em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6915em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.276em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.59em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.74em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9561em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.9161em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0839em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.1931em;"><span style="top:-3.709em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6915em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span><span class="mbin mtight">−</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.604em;vertical-align:-0.95em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.654em;"><span style="top:-3.9029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.123em;"></span><span class="minner">…</span></span></span></span></span></p> <p><strong>Q: What is the simplified expression for the limit of the sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">x_n^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9114em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>?</strong> A: The simplified expression for the limit of the sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">x_n^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9114em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span> is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munder><mrow><mi>lim</mi><mo>⁡</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi mathvariant="normal">∞</mi></mrow></munder><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup><mo>=</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding="application/x-tex">\lim_{n \to \infty} x_n^n = \sqrt{2} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4144em;vertical-align:-0.7em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.4em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop">lim</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.0839em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9561em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.9161em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702 c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14 c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54 c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10 s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429 c69,-144,104.5,-217.7,106.5,-221 l0 -0 c5.3,-9.3,12,-14,20,-14 H400000v40H845.2724 s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7 c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0839em;"><span></span></span></span></span></span></span></span></span></span></p> <p>In this article, we have verified the solution to the problem of finding the limit of the sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">x_n^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9114em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span> as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> approaches infinity. We have used the recursive definition of the sequence and the concept of limits to simplify the expression for the limit of the sequence. We have also found the value of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">L</span></span></span></span> and the final answer for the limit of the sequence <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>x</mi><mi>n</mi><mi>n</mi></msubsup></mrow><annotation encoding="application/x-tex">x_n^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9114em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span>.</p>